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Resonance tunneling of a classical particle
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Exact solutions are obtained for the diffusion in single- and square-well potentials, by using the
Laplace transform method. We compare transmission of a classical particle through one barrier of
given length and through two barriers with a well between them of the same overall length. It turns
out that the existence of a well facilitates the transmission of a classical particle for intermediate
times, which bears some resemblance to resonances tunneling through quantum barriers.

PACS number(s): 05.40.4+j, 05.60.+w

The tunneling of a quantum particle through a poten-
tial barrier(s) is a well-known problem [1]. One of the
peculiarities of this problem is a comparison of the tran-
sition through a double barrier [Fig. 1(b)] and a single
barrier [Fig. 1(a)]. It turns out that the transmission co-
efficient for the incident particle can reach nearly unity
for a double barrier, even though each of the barriers has
a low transparency. This resonance phenomenon takes
place when the energy of an incident particle is close to
one of the eigenstates of a potential well that divides the
two barriers.

A classical particle with energy smaller than the bar-
rier’s height is able to cross the barrier only in the pres-
ence of fluctuations. The question arises whether the ex-
istence of a potential well is able, as in the quantum case,
to assist the transmission over the barrier. In contrast to
the quantum case we consider a dynamic problem, com-
paring the time dependence of transmission of a classical
particle through one barrier of given length and through
two barriers with a well between them of the same overall
length.

The potentials shown in Fig. 1 belong to the class of
simple potentials when the exact solution of the full dy-
namic problem can be obtained by using the Laplace-
transform of the Fokker-Planck equation for the proba-
bility distribution function P(z,t) of the form
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where the diffusion coefficient D and the Bolzmann con-
stant k are set equal to unity.

For the potentials shown in Fig. 1 4 = 0 and Eq. (1)
reduces to simple diffusion equation that can be easily
solved in each of the intervals (—L, —a), (—a, —b), (—b,b),
(b,a), and (a,L). The matching at the boundaries can
be performed keeping in mind that the probability cur-
rent J is continuous, while P (z,t) has finite jumps [2],
P(z—0,t) exp(z(zT;o)) =P(z+0,t) exp(%"'—o)) at the
boundaries £ = +a and ¢z = +b. We assume reflecting
boundary conditions at the walls, J (z = +L,t) = 0, or
the vanishing of P (x,t) at £ = 0o when the walls are
absent [Figs. 1(c,d)].

For simplicity we assume that initially a particle is
located at the very left end of the barrier,
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P(z,t =0) = 6(z + a) (2)

although it is physically obvious that all qualitative re-
sults will not depend on the precise initial position of
a particle in the interval (—L,—a). We have now com-
pletely defined the problem which can be solved using the
Laplace transform, P (z,s) = [;° P (z,t)exp (—st)dt.
In each of the intervals the solution has the form
C; exp(y/sz) + C;+1 exp (—4/sz), and one has to solve six
matching equations for C;, ¢ = 1,2,...6, for the poten-
tial shown in Figs. 1(a,c), and ten matching equations for
those in Figs. 1(b,d).

We will report all details of these simple but tedious
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FIG. 1. Different forms of square-well potentials: (a) one
barrier of width 2a and height U with reflecting boundaries at
z = £L; (b) two barriers of width a — b and height U with a
well of width 2b between the barriers and reflecting boundaries
at £ = +L; (c) the same as (a) with no boundaries; (d) the
same as (b) with no boundaries.
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calculations elsewhere, while here we use the important
result for our purpose that the Laplace transform of the
probability W (t) of finding a particle in the extreme right
interval (a, L) in Fig. 1(b) after crossing the barriers is
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where the expressions J; and Jj1 have the following form:

{ 21 } — {cosh[r (L — a)] sinh]r (@ — b)] + /T sinh [r (L — a)] cosh [r (a — b)]} x {:ﬁf}}: ((:5)) }

+eY/T{cosh[r (L — a)] cosh[r (a — b)] + eV/T sinh [r (L — a)]sinh [r (a — b)]} x {zlonsllll((:%)) } , (4)

where r = /s .

For b — 0, the potential in Fig 1(b) reduces to that of
Fig. 1(a), and, accordingly, Egs. (3) and (4) describe the
latter case when one puts b = 0. For L — oo, Egs. (3)
and (4) describe the probability to be in the region (a, 0o)
after crossing the potential, Figs. 1(c,d).

Two types of poles exist in the inverse Laplace trans-
form of Eq. (3): s = 0, which defines the asymptotic
behavior as t — oo, and those that come from the van-
ishing of J1 and Ji1 . The inverse Laplace transform of
(3), which contains in addition a branch point at s = 0,
is in itself nontrivial, and can be performed analytically
only in a few cases where the characteristic lengths are
the ratios of simple numbers.

We performed the inverse Laplace transform analyt-
ically for the following six cases for the potentials in
Figs. 1(a) and 1(b): (1) L = 2a, b = &; (2) L = 3¢,

=%3) L= %", b= %, and for these values of L with
b = 0. In all these cases we calculated W (t) and found
that the existence of a well inhibits the transmission, i.e.,
it is easier to pass one barrier than two. However, a more
detailed analysis shows that the last statement is not al-
ways correct.

To clarify this point let us consider the asymptotic

time

FIG. 2. Time dependence of the probability to find a parti-
cle in the interval (a,00 ) after crossing one barrier [Fig. 1(c)]
(solid line) and two barriers [Fig. 1(d)] (dashed line).
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form of W(t) as ¢ — oo, which can be obtained from

the inverse Laplace transform of Eq. (3) for small s. The

results turn out to be quite different for the unbounded

motion in the potential in Fig. 1(d) and the restricted

motion in the potential in Fig. 1(b). In the latter case,
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while in the former one,
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An important difference between Egs. (5) and (6) is
that when b — 0 the expression (6) decreases while (5)
increases, i.e., it is easier for large t to pass two barriers
than one for the unbounded motion in Figs. 1(c,d), and
vice versa for Figs. 1(a,b). The explanation for the latter
phenomenon is clear. Indeed, the stationary probability
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FIG. 3. Time dependence of the probability to find a par-
ticle in the interval (a,L) after crossing one barrier [Fig. 1(a);
L =100, a = 3, b = 0] (solid line) and two barriers [Fig. 1(b);
L =100, a = 3, b= 0.1] (dashed line).
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FIG. 4. Characteristic times
in (relative units) that define
the intersections of two curves

3.0 for one and two barriers, with

L =100 and a = 3 as a function
of the half-width of the well:
(a) the large-time intersections
(points A in Fig. 3); (b) the
small-time intersections (points
B in Fig. 3).
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to be in the region (—b,b) is higher in the two-barrier
case (as there is no barrier in this region), and, hence,
the probability to be in the region of interest (a,L) is
smaller compared with the one-barrier potential.

An analysis of another asymptotic case of small ¢ [large
s in (3)] when the reflection from the walls in Figs. 1(a,b)
becomes important, shows that it is always (with an ex-
ception of the exponentially small barrier’s width) easier
to pass one barrier than two successive barriers.

Hence, for the unbounded motion [Figs. 1(c,d)] W(t)
has the form shown in Fig. 2 with one intersection point
between one- and two-barrier potentials.

The situation is more interesting for the restricted mo-
tion [Figs. 1(a,b)]. In both limit cases ¢ — 0 and ¢t — oo,
it is easier to pass one barrier than two. However, one
can expect that for walls removed far away (which is quite
similar to the unbounded case) there are some interme-
diate time intervals where it is easer to pass two barriers
than one. Such points A and B shown in Fig. 3 were,
indeed, founded in the numerical inverse Laplace trans-
form. Figures 4(a,b) obtained for L = 100, exp(%) =5,
a = 3 show two intersection points A and B as functions
of the half-distance b between two barriers. We have not
seen this effect in our exact solutions, since the distances
to the reflecting walls were too small.

3.0

Jumps over high potential barriers are often described
in the framework of the Kramers rate theory [3], which
can be checked as soon as one knows the exact solution
[2]. Following the well-known procedure [3] one finds
the following expression for the Kramers rate k, for the
potential in Fig 1(b):
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Notice that the Kramers rate is maximal when the
width of a barrier, a — b, is equal to the distance L — a
from the barrier to the reflecting wall. A comparison
of Eq. (7) with asymptotic expansion in exp(—%) of the
inverse Laplace transform of Eq. (3) shows that for all ex-
act solutions obtained, the smallest eigenvalues, indeed,
coincide with k1, which justifies the applicability of the
Kramers theory for the potentials shown in Fig. 1. As
expected, the Kramers theory does not work for very
narrow barriers.

In summary, we found that diffusion in simple poten-
tials, like those shown in Fig. 1, contains some unex-
pected features, such as “resonant transmission” through
double potential with a well in the middle, compared with
a single potential of the same overall length.
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